A parallel Newton-Krylov flow solver for the Euler equations on multi-block grids
نویسندگان
چکیده
We present a parallel Newton-Krylov algorithm for solving the three-dimensional Euler equations on multi-block structured meshes. The Euler equations are discretized on each block independently using second-order accurate summation-by-parts operators and scalar numerical dissipation. Boundary conditions are imposed and block interfaces are coupled using simultaneous approximation terms (SATs). The resulting discrete equations are solved iteratively using an inexact Newton method. At each Newton iteration, the linear system is solved inexactly using a Krylov subspace iterative method, and both additive Schwarz and approximate Schur preconditioners are considered. The algorithm is tested on the ONERA M6 wing. The results show that a discretization based on SATs is well suited to a parallel Newton-Krylov solution strategy, and that the approximate Schur preconditioner is more efficient than the Schwarz preconditioner in terms of CPU time and Krylov iterations, for both flow and adjoint solves.
منابع مشابه
A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA Three-Dimensional Multi-Block Newton-Krylov Flow Solver for the Euler Equations
A three-dimensional multi-block Newton-Krylov flow solver for the Euler equations has been developed for steady aerodynamic flows. The solution is computed through a Jacobian-free inexact-Newton method with an approximate-Newton method for startup. The linear system at each outer iteration is solved using a Generalized Minimal Residual (GMRES) Krylov subspace algorithm. An incomplete lower/uppe...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA Fully Coupled Newton-krylov Solver for Turbulent Aerodynamics Flows
A fast Newton-Krylov algorithm is presented for solving the compressible Navier-Stokes equations on structured multi-block grids with application to turbulent aerodynamic flows. The oneequation Spalart-Allmaras model is used to provide the turbulent viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a preconditioner, operating on a modified Jacobian matrix. An ef...
متن کاملA Fully Coupled Newton-krylov Solver for Turbulent Aerodynamic Flows
A fast Newton-Krylov algorithm is presented for solving the compressible Navier-Stokes equations on structured multi-block grids with application to turbulent aerodynamic flows. The oneequation Spalart-Allmaras model is used to provide the turbulent viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a preconditioner, operating on a modified Jacobian matrix. An ef...
متن کامل